深度学习推荐系统

2021-10-03

点评

这本书可以说是概述了推荐系统的历史,尤其是深度学习在推荐系统上的应用。需要对推荐的业务具有很深刻的理解,同时对于用户心理需要很好的把握。才能把很多特征进行提取融合~

同时,这个领域需要对大数据处理的工具比较熟练,大数据的处理,以及大数据的训练,非常让人激动的事情。需要对algorithm & infra具有比较好的掌握。

摘录

最好从实际问题和需求出发,来进行算法革新。算法系统协同设计是需要的,需要进行革新。比如对于粗排的更新,使用蒸馏的模型,而不是原先的LR、FM这些。

cherimola

为什么推荐系统是互联网增长的引擎

cherimola

cherimola

cherimola

传统方法

cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola

深度学习

cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola

Embedding

cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola

多视角推荐系统

cherimola cherimola cherimola cherimola cherimola cherimola cherimola cherimola

工程实现

cherimola cherimola cherimola cherimola cherimola cherimola cherimola

评估

cherimola cherimola cherimola cherimola cherimola cherimola cherimola

重要研究

Facebook

Practical lessons from predicting clicks on Ads at Facebook

Deep learning recommendation model for personalization & recommendation systems

Airbnb

Real-time personalization using embeddings for search ranking at Airbnb

From ranknet to lambdarank: an overview

Youtube

Deep neural networks for Youtube recommendations

Alibaba

Learning piece-wise linear models from large scale data for Ad click prediction

Deep interest network for click-through rate prediction

Deep interest evolution network for click-through rate prediction

Practice on long sequence user behavior modeling for click-through rate prediction

Entire space multi-task model: an effective approach for estimation post-click convertion rate

总结

cherimola

cherimola

Ref

DRN: a deep reinforcement learning framework for news recommender

Deep interest evolution network for click-through rate prediction

Deep interest network for click-through rate prediction

Attention factorization machines: learning weight of feature interactions via attention networks

Neural factorization machines for sparse predictive analytics

DeepFM: a factorization machines for sparse predictive analytics

Deep learning over multi-field categorical data.

Deep & cross network for Ad click predictions

Wide & deep learning for recommender system

Product-based neural networks for user response prediction

Neural collaborative filtering

Web-scale modeling without manually crafted combinational features

Autorec: Autoencoders meet collaborative filtering

Deep Neural Networks for Youtube Recommendaers

Distribued representations of words & phrases & their compositionality

Efficient estimation of word representations in vector space

Word2vec parameter learning explained

Word2vec explained: deriving Mikolov et al.’s negative-sampling word-embedding method

A neural probabilistic language model

Item2vec: neural item embedding for collaborative filtering

Deepwalk: online learning of social representation

Node2vec: scalable feature learning for networks

Billion-scale commodity embedding for e-commerce recommender in Alibaba

Large-scale information network embedding

Structural deep network embedding

Dual averaging methods for regularized stochastic learning & online optimization

Entire space multi-task model: an effective approach for estimating post-click conversion rate

A survey of active learning in collaborative filtering recommender systems

Finite-time analysis of the mutiarmed bandit problem

Ad click prediction: a view from the trenches

Entire space multi-task model: an effective approach for estimating post-click conversion rate

Artwork personalization at Netflix

A survey of active learning in collaborative filtering recommender systems

An empirical evaluation of Thompson sampling

A contextual-bandit approach to personalized news article recommender

Parameter server for distributed machine learning

Tensorflow: large-scale machine learning on heterogeneous distribued system

Tensorflow: a system for large-scale machine learning`

Locality-sensitive hashing for finding nearest neighbors

Using Collaborative filtering to weave an information tapestry

Amazon.com Recommenders: item-to-item collaborative filtering

Matrix factorization techniques for recommender systems

Factorization machine

Field-aware factorization machines for CTR prediction

Practical lessons from predicting clicks on Ads at Facebook

Learning piece-wise linear

Unbiased offline evaluation of contextual-bandit-based news article recommender algorithms

Overlapping experiment infastructure: mode, better, faster experimentation

Optimized interleaving for online retrieval evaluation